بسم الله الرحمن الرحيم

001 Lesson Outline

تاريخ النشر : April 12, 2024

None


In this lesson, we will learn how to:

  1. Use AWS Sagemaker Studio to access datasets from S3 and perform data analysis functions using AWS tools
  • how to create a Sagemaker studio and configure it.
  • Access dataset from S3
  • change the Kennel and instance type of studio
  • clone git repositories as directors in notebook
  • use Pandas from Jupiter lab instance


  1. Perform data analysis and feature engineering with Data Wrangler
  • Import data from S3
  • visualize data
  • transform Data
  • Export the Results back to S3


  1. Perform data analysis and feature engineering with Pandas in Sagemaker Studio
  • Create DataFrame from data
  • Saving data to CSV
  • Summary statistics
  • Histogram plotting
  • correlation plotting


  1. Label new data for a dataset with Sagemaker ground truth
  • Creating annotation job
  • Label private annotation job
  • Export results to S3

Together, these skills will provide you with the necessary tools to analyze and create data for your machine learning models.

العودة إلي 002 التحليل الاستكشافي للبيانات Exploratory Data Analysis